Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samil Ișıı, ${ }^{\text {a* }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Ayșen Agarar and Selami Șașmaz ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, ${ }^{\mathbf{b}}$ Karadeniz Teknik University, Rize Art and Science Faculty, Department of Chemistry, Rize, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: samili@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.153$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Benzyl-4-(p-fluorobenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{OF}$, molecules are linked through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form dimers. The dimers are held together by van der Waals interactions.

Comment

Most Schiff bases possess antibacterial, anticancer, antiinflammatory and antitoxic activities (Williams, 1972), and sulfur-containing Schiff bases are particularly effective. For example, the 4 -amino-3-methyl-1,2,4-triazole-5-thione derivative of p-nitrobenzaldehyde is known as a highly effective inhibitor of Staphylococcus aureus (Liu et al., 1999). As part of our continuing study of Schiff bases of amine and 1,2,4-triazole derivatives, we have structurally characterized the title compound, (I) (Fig. 1)

(I)

The bonds and angles in (I) (Table 1) are consistent with those in similar substituted triazoles (Kahveci et al., 2003; Çoruh et al., 2003; Işık et al., 2003). The benzyl rings and 1,2,4triazole ring are almost planar, with a maximum deviation of 0.008 (2) \AA for N 2 . The dihedral angles between the $1,2,4-$ triazole ring and benzyl rings $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16$ are 179.3 (1) and $104.9(1)^{\circ}$, respectively, and the dihedral angle between the benzyl rings is $104.9(1)^{\circ}$.

The molecules of (I) form hydrogen-bonded dimers through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions involving triazole atoms O1 and N2, shown as dashed lines in Fig. 2. This appears to be a common feature in Schiff bases of 4-amino-3-alkyl-1,2,4-tria-zole-5-thiones (Sen et al., 1998). The molecule also exhibits an intramolecular $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1$ contact (Table 2).

Experimental

The corresponding amino compound ($1.90 \mathrm{~g} ., 0.01 \mathrm{~mol}$) was heated in an oil bath with 4-fluorobenzene ($1.04 \mathrm{ml}, 0.01 \mathrm{~mol}$) at $428-433 \mathrm{~K}$ for one hour and then allowed to cool. The solid product was recrys-

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level and the atom-numbering scheme.

Figure 2
Dimer formation in the crystal structure of (I). Intermolecular N-H $\cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.
tallized from ethanol (yield; 96\%) to give the desired compound (I) (m.p. $=466-467 \mathrm{~K}$). Calculated: C 64.86, H 4.42, N 18.91%; found: C 64.83, H $4.26, \mathrm{~N} 18.35 \%$. IR data $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3250(\mathrm{~N}-\mathrm{H}), 1720$ $(\mathrm{C}=\mathrm{O}), 1620,1600(\mathrm{C}=\mathrm{N}), 700,680,840$ (aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta /\right.$ p.p.m. $): 4.18\left(\mathrm{CH}_{2}, s, 2 \mathrm{H}\right), 9,78(\mathrm{CH}, s, 1 \mathrm{H}), 10.10(\mathrm{NH}, s$, $1 \mathrm{H})$; $\mathrm{Ar}-\mathrm{H}: 7.04-7.40(m, 7 \mathrm{H}), 7.70(d, 2 \mathrm{H})$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}$
$M_{r}=296.30$
Triclinic, $P \overline{1}$
$a=7.0290$ (15) £
$b=10.141$ (2) \AA
$c=11.205$ (3) \AA
$\alpha=96.40(2)^{\circ}$
$\beta=102.944$ (17) ${ }^{\circ}$
$\gamma=108.394(16)^{\circ}$
$V=724.2(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.359 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8077 \\
& \quad \text { reflections } \\
& \theta=0.0-29.5^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.75 \times 0.46 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS2 diffractometer
Rotation method scans
Absorption correction: none 3550 measured reflections 3550 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.153$
$S=1.00$
3550 reflections
212 parameters
H atom parameters constrained

2341 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=29.3^{\circ}$
$h=-9 \rightarrow 0$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1093 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.028(10)
\end{aligned}
$$

Table 1

Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

F1-C1	$1.3598(19)$	N2-N3	$1.3777(19)$
O1-C8	$1.2314(18)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.2975(19)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.2730(19)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.3859(18)$
$\mathrm{N} 1-\mathrm{N} 4$	$1.3878(16)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.3890(19)$
N2-C8	$1.3459(19)$		
C7-N1-N4	$117.68(13)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2N $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.97	$2.799(2)$	161
C7-H7 \cdots O1	0.93	2.19	$2.893(2)$	132

Symmetry code: (i) $-2-x,-1-y, 2-z$.
H atoms were positioned geometrically and refined isotropically using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distance at $0.93 \AA$, the methylene $\mathrm{C}-\mathrm{H}$ distance at $0.97 \AA$ and the $\mathrm{N}-\mathrm{H}$ distance at $0.86 \AA$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Çoruh, U., Kahveci, B., Şaşmaz, S., Ag̃ar, E. \& Kim,Y. (2003), Acta Cryst. E59, o530-o532.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Işık, Ş., Kahveci, B., Ag̃ar, E., Şaşmaz, S. \& Vázquez-López, E. M. (2003). Acta Cryst. E59, o804-o805.
Kahveci, B. \& Íkizler, A. A.(2000). Turk. J. Chem. 24, 343-351.
Liu, Y. F., Chantrapromma, S., Shanmuga Sundara Raj, S., Fun, H.-K., Zhang,
Y. H., Xie, F. X., Tian, Y. P. \& Ni, S. S. (1999). Acta Cryst. C55, 93-94.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sen, A. K., Singh, R. N., Handa, R. N., Dubey, S. N. \& Squattrito, P. J. (1998). J. Mol. Struct. 470, 61-69.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA and X-RED. Stoe \& Cie GmbH, Darmstadt, Germany.
Williams, D. R. (1972). Chem. Rev. 72, 203-213.

